Ozempic 0.25 mg, 0.5 mg/dose
One mL of solution contains 1.34 mg of semaglutide. One pre-filled pen contains 2 mg semaglutide in a 1.5 mL solution.

Ozempic 1 mg/dose
One mL of solution contains 1.34 mg semaglutide. One pre-filled pen contains 4 mg semaglutide in 3 mL solution.

Semaglutide is a human glucagon-like-peptide-1 (GLP-1) receptor agonist produced in Saccharomyces cerevisiae by recombinant DNA technology followed by protein purification.

For the full list of excipients, see Section 6.1 List of Excipients.

Pharmacological Form
Ozempic solution for injection is provided in a pre-filled multidose disposable pen, which contains semaglutide in a 1.5 mL or 3 mL cartridge. It is a clear and colourless, or almost colourless, isotonic solution with pH = 7.4.

Clinical Particulars
4.1 Therapeutic Indications
Ozempic is indicated for the treatment of adults with insufficiently controlled type 2 diabetes mellitus as an adjunct to diet and exercise:
- as monotherapy when metformin is not tolerated or contraindicated.
- in addition to other medicinal products for the treatment of type 2 diabetes.

4.2 Dose and Method of Administration
Dosage
Ozempic starting dose is 0.25 mg once weekly. After 4 weeks, the dose should be increased to 0.5 mg once weekly. After at least 4 weeks with a dose of 0.5 mg once weekly, the dose can be increased to 1 mg once weekly to further improve glycaemic control.

Ozempic 0.25 mg is not a maintenance dose. When Ozempic is added to existing metformin and/or thiazolidinedione therapy, the current dose of metformin and/or thiazolidinedione can be continued unchanged.

When Ozempic is added to existing therapy of a sulfonylurea or insulin, a reduction in the dose of sulfonylurea or insulin should be considered to reduce the risk of hypoglycaemia (see section 4.4 Special Warnings and Precautions for Use).

The use of Ozempic does not require blood glucose self-monitoring. Self-monitoring may be performed when Ozempic is used together with sulfonylurea or insulin in order to allow adjustment of the dose of these medications.

Method of Administration
Ozempic is to be administered once weekly, on the same day each week, at any time of the day, with or without meals.

Ozempic is to be injected subcutaneously in the abdomen, in the thigh or in the upper arm. The injection site can be changed without dose adjustment. Ozempic should not be administered intravenously or intramuscularly. For further information on administration, see section 6 Pharmaceutical Particulars.

The day of weekly administration can be changed if necessary as long as the time between two doses is at least 3 days (>72 hours). After selecting a new dosing day, once-weekly dosing should be continued.

If a dose is missed, it should be administered as soon as possible and within 5 days after the missed dose. If more than 5 days have passed, the missed dose should be skipped, and the next dose should be administered on the regularly scheduled day. In each case, patients can then resume their regular once weekly dosing schedule.

Dosage Adjustment
Elderly (≥ 65 years old)
No dose adjustment is required based on age. Therapeutic experience in patients ≥75 years of age is limited (see section 5.2 Pharmacokinetic Properties).

Race and Ethnicity
No dose adjustment is required based on race and ethnicity.

Patients with hepatic impairment
No dose adjustment is required for patients with hepatic impairment (see section 5.2). Experience with the use of semaglutide in patients with severe hepatic impairment is limited. Caution should be exercised when treating these patients with semaglutide.

Patients with renal impairment
No dose adjustment is required for patients with renal impairment. Experience with the use of semaglutide in patients with severe (CrCl < 30 mL/min) renal impairment is limited. Semaglutide is not recommended for use in patients with end-stage renal disease (see section 5.2 Pharmacokinetic Properties).

Children and adolescents
Safety and efficacy of Ozempic in children and adolescents below 18 years have not been studied.

4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Special Warnings and Precautions for Use
Ozempic should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

Ozempic is not a substitute for insulin.

Gastrointestinal Effects
Use of GLP-1 receptor agonists may be associated with gastrointestinal adverse reactions. This should be considered when treating patients with impaired renal function as nausea, vomiting, and diarrhoea, may cause dehydration which could cause a deterioration of renal function.

Acute Pancreatitis
Acute pancreatitis has been observed with the use of GLP-1 receptor agonists. Patients should be informed of the characteristic symptoms of acute pancreatitis. If pancreatitis is suspected, Ozempic should be discontinued; if confirmed, Ozempic should not be restarted. Caution should be exercised in patients with a history of pancreatitis.

Hypoglycaemia
Patients treated with Ozempic in combination with a sulfonylurea or insulin may have an increased risk of hypoglycaemia. The risk of hypoglycaemia can be lowered by reducing the dose of sulfonylurea or insulin when initiating treatment with Ozempic.

Diabetic Retinopathy
In patients with diabetic retinopathy treated with insulin and semaglutide, an increased risk of developing diabetic retinopathy complications has been observed (see section 4.8 Adverse Effects). Caution should be exercised when using semaglutide in patients with diabetic retinopathy treated with insulin. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy. Long-term glycaemic control

This medicinal product is subject to additional monitoring in Australia. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse events at www.tga.gov.au/reporting-problems.
dramatically reduces the risk of diabetic retinopathy. Patients with a history of diabetic retinopathy should be monitored for worsening and treated according to clinical guidelines.

Heart Failure
There is no therapeutic experience in patients with congestive heart failure New York Heart Association (NYHA) class IV and therefore use of semaglutide is not recommended in these patients.

Use in hepatic impairment
Experience with the use of semaglutide in patients with severe hepatic impairment is limited. Caution should be exercised when treating these patients with semaglutide.

Use in renal impairment
Experience with the use of semaglutide in patients with severe (CrCl <30 mL/min) renal impairment is limited. Semaglutide is not recommended for use in patients with end-stage renal disease (see sections 5.1 Pharmacodynamic Properties and 5.2 Pharmacokinetic Properties).

Paediatric Use
The safety and efficacy of semaglutide in children and adolescents aged below 18 years has not been studied.

Effects on laboratory tests
No data available.

4.5 Interactions with Other Medicines and Other Forms of Interactions

In vitro studies have shown very low potential for semaglutide to inhibit or induce CYP enzymes, and to inhibit drug transporters.

The delay of gastric emptying with semaglutide may influence the absorption of coadministered oral medicinal products, therefore semaglutide should be used with caution in patients receiving oral medicinal products that require rapid gastrointestinal absorption. The potential effect of semaglutide on the absorption of co-administered oral medicinal products was studied in trials at semaglutide 1 mg steady state exposure.

No clinically relevant drug–drug interaction with semaglutide (Figure 1) was observed based on the evaluated medications. Therefore, no dose adjustment is required when co-administered with semaglutide.

Oral Contraceptives
Semaglutide is not anticipated to decrease the effectiveness of oral contraceptives as semaglutide did not change the overall exposure of ethinylestradiol and levonorgestrel to a clinically relevant degree when an oral contraceptive combination medicinal product (0.03 mg ethinylestradiol/0.15 mg levonorgestrel) was co-administered with semaglutide. Exposure of ethinylestradiol was not affected; an increase of 20% was observed for levonorgestrel exposure at steady state. Cmax was not affected for any of the compounds.

Atorvastatin
Semaglutide did not change the overall exposure of atorvastatin following a single dose administration of atorvastatin (40 mg). Atorvastatin Cmax was decreased by 38%. This was assessed not to be clinically relevant.

Digoxin
Semaglutide did not change the overall exposure or Cmax of digoxin following a single dose of digoxin (0.5 mg).

Metformin
Semaglutide did not change the overall exposure or Cmax of metformin following dosing of 500 mg twice daily over 3.5 days.

Warfarin
Semaglutide did not change overall exposure or Cmax of R- and S-warfarin following a single dose of warfarin (25 mg), and the pharmacodynamic effects of warfarin as measured by the international normalised ratio were not affected in a clinically relevant manner.

4.6 Fertility, Pregnancy and Lactation

Effects on fertility
The effect of semaglutide on fertility in humans is unknown. Semaglutide did not affect male fertility in rats at daily SC doses of 828 μg/kg, resulting in exposures approximately 13 times the clinical AUC. In female rats, an increase in oestrous length and a small reduction in number of ovulations were observed at doses associated with maternal body weight loss (≥30μg/ kg/day SC, resulting in subclinical exposures).

Use in pregnancy
Pregnancy Category: D
Semaglutide should not be used during pregnancy. Women of childbearing potential are recommended to use contraception when treated with semaglutide. If a patient wishes to become pregnant, or pregnancy occurs, semaglutide should be discontinued. Semaglutide should be discontinued at least 2 months before a planned pregnancy due to the long half-life (see section 5.1 Pharmacodynamic Properties).

Studies in animals have shown reproductive toxicity when semaglutide was administered during organogenesis. In pregnant rats, embryofetal toxicity (lethality, impaired growth and an increased incidence of fetal abnormalities) was observed at subclinical plasma exposures. Mechanistic

<table>
<thead>
<tr>
<th>Co-administered medication</th>
<th>Relative exposure Ratio and 90% CI</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>S-warfarin</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>R-warfarin</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>Digoxin</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>Ethinylestradiol</td>
<td></td>
<td>No dose adjustment</td>
</tr>
<tr>
<td>Levonorgestrel</td>
<td></td>
<td>No dose adjustment</td>
</tr>
</tbody>
</table>

Relative exposure in terms of AUC and Cmax for each medication when given with semaglutide compared to without semaglutide. Metformin and oral contraceptive drug (ethinylestradiol/levonorgestrel) were assessed at steady state. Warfarin (S-warfarin/R-warfarin), digoxin and atorvastatin were assessed after a single dose.

Abbreviations: AUC: area under the curve. Cmax: maximum concentration. CI: confidence interval.

Figure 1: Impact of semaglutide on the exposure of co-administered oral medications
studies suggest a direct GLP-1 receptor mediated role of semaglutide on some of the effects in rats (species specific). In pregnant rabbits, pharmacologically mediated reductions in maternal body weight gain and food consumption were observed at all dose levels. Early pregnancy losses and increased incidences of minor visceral (kidney, liver) and skeletal (sternebra) fetal abnormalities were observed at ≥0.0025 mg/kg/day, at clinically relevant exposures. In pregnant cynomolagus monkeys, pharmacologically mediated, marked initial maternal body weight loss and reductions in body weight gain and food consumption coincided with the occurrence of sporadic abnormalities (vertebra, sternebra, ribs) and with an increase in early pregnancy losses at ≥0.075 mg/kg twice weekly (>2.7 fold clinical exposure at 1 mg/week). Exposures at the NOAEL in all species were subclinical and a direct effect of semaglutide on the fetus cannot be excluded.

Use in lactation
In lactating rats, semaglutide was excreted in milk. A risk to a breast-fed child cannot be excluded. Semaglutide should not be used during breast-feeding.

4.7 Effects on Ability to Drive and Use Machines
Ozempic has no or negligible influence on the ability to drive or use machines. When it is used in combination with a sulfonylurea or insulin, patients should be advised to take precautions to avoid hypoglycaemia while driving and using machines.

Adverse effects of Ozempic include dizziness which could affect the ability to drive or use machines (see Section 4.8 Adverse Effects (Undesirable Effects)).

4.8 Adverse Effects (Undesirable Effects)
Summary of the Safety Profile
In 8 phase 3a trials, 4,792 patients were exposed to Ozempic alone or in combination with other glucose lowering medicinal products. The duration of the treatment ranged from 30 weeks to 2 years.
The most frequently reported adverse reactions in clinical trials were gastrointestinal disorders, including nausea, diarrhoea and vomiting. In general, these reactions were mild or moderate in severity and of short duration.

Reporting suspected adverse effects
Reporting suspected adverse reactions after registration of the medicinal product is important. It allows continued monitoring of the benefit–risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions at www.tga.gov.au/reporting-problems.

Tabulated List of Adverse Events
Table 1: Treatment-emergent adverse events with frequency ≥5% comparing Ozempic 0.5 mg dose, Ozempic 1.0 mg dose with comparators

<table>
<thead>
<tr>
<th>Adverse Event Term</th>
<th>Ozempic 0.5 mg dose % (n=1737)</th>
<th>Ozempic 1.0 mg dose % (n=1777)</th>
<th>Comparator % (n=1657)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>17.0</td>
<td>19.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6.4</td>
<td>8.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>4.1</td>
<td>5.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>12.2</td>
<td>13.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Constipation</td>
<td>6.9</td>
<td>6.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>14.5</td>
<td>10.7</td>
<td>13.8</td>
</tr>
<tr>
<td>Lipase increased</td>
<td>8.7</td>
<td>8.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Headache</td>
<td>5.3</td>
<td>6.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>6.3</td>
<td>7.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Adverse Reactions
Table 2 lists adverse reactions identified in phase 3a trials in patients with type 2 diabetes (further described in section 5.1 Pharmacodynamic Properties). The frequencies of the adverse reactions are based on a pool of the phase 3a trials excluding the cardiovascular outcomes trial.

The reactions are listed below by system organ class and absolute frequency. Frequencies are defined as: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1000 to <1/100); rare (≥1/10,000 to <1/10,000); and very rare: (<1/10,000). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 2: Adverse reactions from controlled phase 3a trials

<table>
<thead>
<tr>
<th>MedDRA system organ class</th>
<th>Very common</th>
<th>Common</th>
<th>Uncommon</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune-system disorders</td>
<td></td>
<td></td>
<td></td>
<td>Anaphylactic reaction</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nervous system disorders
Dizziness
Dysgeusia

Eye disorders
Diabetic retinopathy complications

Cardiac disorders
Increased heart rate

Gastrointestinal disorders
Nausea
Diarrhoea
Vomiting
Abdominal pain
Abdominal distension
Constipation
Dyspepsia
Gastritis
Gastro-oesophageal reflux disease
Eruption
Flatulence

Hepatobiliary disorders
Cholelithiasis

General disorders and administration site conditions
Fatigue
Injection site reactions

Investigations
Increased lipase
Increased amylase
Weight decreased

* Hypoglycaemia defined as severe (requiring the assistance of another person) or symptomatic in combination with a blood glucose <3.1 mmol/l.
* Diabetic retinopathy complications is a composite of: need for retinal photocoagulation, need for treatment with intravitreal agents, vitreous haemorrhage, onset of diabetes-related blindness. Frequency based on cardiovascular outcomes trial.

2-year cardiovascular outcomes and safety trial
In a high cardiovascular risk population the adverse reaction profile was similar to that seen in the other phase 3a trials (described in section 5.1).

Description of Selected Adverse Reactions
Hypoglycaemia
No episodes of severe hypoglycaemia were observed when Ozempic was used as monotherapy. Severe hypoglycaemia was primarily observed when Ozempic was used with a sulfonylurea (1.2% of subjects, 0.03 events/patient year) or insulin (1.5% of subjects, 0.02 events/patient year). Few severe episodes (0.1% of subjects, 0.001 events/patient/year) were observed with Ozempic in combination with oral antidiabetics other than sulfonylureas.

Gastrointestinal Adverse Reactions
Nausea occurred in 17.0% and 19.9% patients when treated with Ozempic 0.5 mg and 1 mg respectively, diarrhoea in 12.2% and 13.3% and vomiting in 6.4% and 8.4%. Most events were mild to moderate in severity and of short duration. The events led to treatment discontinuation in 3.9% and 5.9% of subjects. The events were most frequently reported during the first months on treatment. Patients with low body weight may experience more gastrointestinal side effects when treated with semaglutide.

Diabetic Retinopathy Complications
In a 2-year clinical trial involving 3,297 patients with type 2 diabetes and high cardiovascular risk, long duration of diabetes and poorly controlled blood glucose, adjudicated events of diabetic retinopathy complications occurred in more patients treated with Ozempic (3.0%) compared to
placebo (1.8%). The treatment difference appeared early and persisted throughout the trial. The absolute risk increase for diabetic retinopathy complications was larger among patients with a history of diabetic retinopathy treated with insulin at baseline. In the patients that did not have a documented history of diabetic retinopathy the number of events were similar for Ozempic and placebo.

In other clinical trials up to 1 year involving 4,807 patients with type 2 diabetes patients, adverse events related to diabetic retinopathy were reported in similar proportions of subjects treated with Ozempic (1.7%) and comparators (2.0%).

Discontinuation Due to an Adverse Event
The incidence of discontinuation of treatment due to adverse events was 6.1% and 8.7% for patients treated with semaglutide 0.5 mg and 1 mg respectively, versus 1.5% for placebo. The most frequent adverse events leading to discontinuation were gastrointestinal.

Injection Site Reactions
Injection site reactions (e.g. injection site rash, erythema) have been reported by 0.6% and 0.5% of patients receiving semaglutide 0.5 mg and 1 mg respectively. A similar rate of injection site reactions was experienced by patients receiving placebo. These reactions have usually been mild.

Immunogenicity
Consistent with the potentially immunogenic properties of medicinal products containing proteins or peptides, patients may develop antibodies following treatment with semaglutide. The proportion of patients tested positive for anti-semaglutide antibodies at any time point post-baseline was low (1–2%) and no patients had anti-semaglutide neutralising antibodies or anti-semaglutide antibodies with endogenous GLP-1 neutralising effect at end-of-trial.

Heart Rate Increase
Increased heart rate has been observed with GLP-1 receptor agonists. In the phase 3a trials, mean increases of 1 to 6 beats per minute (bpm) from a baseline of 72 to 76 bpm were observed in subjects treated with semaglutide. In a long-term trial in subjects with cardiovascular risk factors, 16% of semaglutide-treated subjects had an increase in heart rate of >10 bpm compared to 11% of subjects on placebo after 2 years of treatment.

Increases in Amylase and Lipase
In placebo-controlled trials, patients exposed to semaglutide had a mean increase from baseline in amylase of 13% and lipase of 22%. These changes were not observed in placebo-treated patients. In the absence of other signs and symptoms of acute pancreatitis, elevations in pancreatic enzymes alone are not predictive of acute pancreatitis.

Cholelithiasis
In placebo-controlled trials, cholelithiasis was reported in 1.5% and 0.4% of patients-treated with semaglutide 0.5 mg and 1 mg respectively. Cholelithiasis was not reported in placebo-treated patients.

Fatigue, Dysgeusia and Dizziness
Other adverse reactions with a frequency of >0.4% associated with semaglutide include fatigue, dysgeusia and dizziness.

4.9 Overdose
Overdoses of up to 4 mg in a single dose, and up to 4 mg in a week have been reported in clinical trials. The most commonly reported adverse event was nausea. All patients recovered without complications.

There is no specific antidote for overdose with Ozempic. In the event of overdose, appropriate supportive treatment should be initiated according to the patient’s clinical signs and symptoms. A prolonged period of observation and treatment for these symptoms may be necessary, taking into account the long half-life of Ozempic of approximately 1 week (see section 5.2 Pharmacokinetic Properties).

For information on the management of overdose, contact the Poisons Information Centre on 13 11 26 (Australia).

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic Properties
Pharmacotherapeutic group: Drugs used in diabetes, Glucagon-like peptide-1 (GLP-1) analogues, ATC code: A10BJ06.

Mechanism of action
Semaglutide is a GLP-1 analogue with 94% sequence homology to human GLP-1. Semaglutide acts as a GLP-1 receptor agonist that binds to and activates the GLP-1 receptor, the target for native GLP-1.

GLP-1 is a physiological hormone that has multiple actions in glucose and appetite regulation, and in the cardiovascular system. The glucose and appetite effects are specifically mediated via GLP-1 receptors in the pancreas and the brain. GLP-1 receptors are also expressed in the heart, vasculature and immune system and kidney from where it may mediate cardiovascular and microvascular effects.

Compared to native GLP-1, semaglutide has a prolonged half-life of around 1 week making it suitable for once weekly s.c. administration. The principal mechanism of protraction is albumin binding, which results in decreased renal clearance and protection from metabolic degradation. Furthermore, semaglutide is stabilised against degradation by the DPP-4 enzyme.

Semaglutide reduces blood glucose through a mechanism where it stimulates insulin secretion and lowers glucagon secretion, both in a glucose-dependent manner. Thus, when blood glucose is high, insulin secretion is stimulated and glucagon secretion is inhibited. The mechanism of blood glucose lowering also involves a minor delay in gastric emptying in the early postprandial phase. During hypoglycaemia semaglutide diminishes insulin secretion and does not impair glucagon secretion.

Semaglutide reduces body weight and body fat mass through lowered energy intake, involving an overall reduced appetite, which includes increased satiety and reduced hunger, as well as improved control of eating and decreased food cravings. Insulin resistance is also reduced, probably through reduction in body weight. In addition, semaglutide reduces the preference for high fat foods. Semaglutide had a beneficial effect on plasma lipids, lowered systolic blood pressure and reduced inflammation in clinical studies.

In animal studies, semaglutide attenuates the development of atherosclerosis by preventing aortic plaque progression and reducing inflammation in the plaque.

Pharmacodynamic Effects
All pharmacodynamic evaluations were performed after 12 weeks of treatment (including dose escalation) at steady state with semaglutide 1 mg once weekly.

Fasting and Postprandial Glucose
Semaglutide reduces fasting and postprandial glucose concentrations. In patients with type 2 diabetes, treatment with semaglutide 1 mg resulted in reductions in glucose in terms of absolute change from baseline (mmol/l / mg/dl) and relative reduction compared to placebo (%) for fasting glucose (1.6 mmol/l / 29 mg/dl; 22%), 2 hour postprandial glucose (4.1 mmol/l / 74 mg/dl; 37%), mean 24 hour glucose concentration (1.7 mmol/l / 30 mg/dl; 22% reduction) and postprandial glucose excursions over 3 meals (0.6–1.1 mmol/l / 11–20 mg/dl) compared to placebo (see Figure 2).

Semaglutide lowered fasting glucose after the first dose.

Figure 2: Mean 24 hour plasma glucose profiles (standardised meals) in patients with type 2 diabetes before (baseline) and after 12 weeks of treatment with semaglutide or placebo.
Beta-cell function and insulin secretion
Semaglutide improves beta-cell function. Semaglutide, compared to placebo, improved first- and second-phase insulin response, with a 3- and 2-fold increase, respectively, following an intravenous bolus of glucose, and increased maximal beta-cell secretory capacity after an arginine stimulation test in patients with type 2 diabetes. In addition, semaglutide treatment increased fasting insulin concentrations compared to placebo.

Glucagon Secretion
Semaglutide lowers the fasting and postprandial glucagon concentrations. In patients with type 2 diabetes, semaglutide resulted in the following relative reductions in glucagon compared to placebo: fasting glucagon (8–21%), postprandial glucagon response (14–15%) and mean 24 hour glucagon concentration (12%).

Glucose Dependent Insulin and Glucagon Secretion
Semaglutide lowered high blood glucose concentrations by stimulating insulin secretion and lowering glucagon secretion in a glucose dependent manner. With semaglutide, the insulin secretion rate in patients with type 2 diabetes was comparable to that of healthy subjects (see Figure 3).

Figure 3: Mean insulin secretion rate versus glucose concentration in patients with type 2 diabetes during graded glucose infusion before (baseline) and after 12 weeks of treatment with semaglutide or placebo and in untreated healthy subjects

During induced hypoglycaemia, semaglutide compared to placebo did not alter the counter regulatory responses of increased glucagon, and did not impair the decrease of C-peptide in patients with type 2 diabetes.

Gastric Emptying
Semaglutide caused a minor delay of early postprandial gastric emptying, thereby reducing the rate at which glucose appears in the circulation postprandially.

Body Weight and Body Composition
A greater reduction in body weight was observed with semaglutide compared to studied comparators (placebo, sitagliptin, exenatide ER and insulin glargine) (section 5.1). The body weight loss with semaglutide was predominantly from fat tissue with loss of fat mass being 3-fold larger than loss of lean mass.

Appetite, Energy Intake and Food Choice
Semaglutide compared to placebo lowered the energy intake of 3 consecutive ad libitum meals by 18–35%. This was supported by a semaglutide-induced suppression of appetite in the fasting state as well as postprandially, improved control of eating, less food cravings and a relative lower preference for high fat food.

Fasting and Postprandial Lipids
Semaglutide compared to placebo lowered fasting triglyceride and VLDL cholesterol concentrations by 12% and 21%, respectively. The postprandial triglyceride and VLDL cholesterol response to a high fat meal was reduced by >40%.

Cardiac Electrophysiology (QTc)
The effect of semaglutide on cardiac repolarization was tested in a thorough QTc trial. Semaglutide did not prolong QTc intervals at supratherapeutic dose levels (up to 1.5 mg at steady state).

Clinical trials
Both improvement of glycaemic control and reduction of cardiovascular morbidity and mortality are an integral part of the treatment of type 2 diabetes.

The efficacy and safety of Ozempic 0.5 mg and 1 mg once weekly were evaluated in six randomised controlled phase 3a trials. Of these, five trials (SUSTAIN 1–5) had glycaemic efficacy assessment as the primary objective, while one trial (SUSTAIN 6) had cardiovascular outcome as the primary objective. Additionally, two phase 3 trials were conducted with Ozempic in Japanese patients with safety as the primary objective and efficacy the secondary objective.

The trials included in total 8,124 randomised patients with type 2 diabetes (4,792 treated with semaglutide).

An additional trial including 1,201 patients was conducted to compare the efficacy and safety of Ozempic 0.5 mg and 1 mg once weekly versus dulaglutide 0.75 mg and 1.5 mg once weekly, respectively.

Treatment with Ozempic demonstrated statistically significant and clinically meaningful reductions in HbA1c, (see Figure 4) and body weight maintained for up to 2 years compared to placebo and active control treatment (sitagliptin, insulin glargine, exenatide ER and dulaglutide).

The efficacy of Ozempic was not impacted by age, gender, race, ethnicity, BMI at baseline, body weight (kg) at baseline, diabetes duration and level of renal function impairment.

SUSTAIN 1 – Monotherapy
In a 30-week double-blind trial, 388 patients inadequately controlled with diet and exercise were randomised to Ozempic 0.5 mg or Ozempic 1 mg once weekly or placebo.

Patients had a mean age of 54 years and a mean duration of type 2 diabetes of 4.2 years. There were 64% White patients, 8% were Black or African Americans and 21% were Asian. For ethnicity, 30% of patients (n=115) were Hispanic or Latino. The mean BMI was 33 kg/m².

Table 3: Results at 30 weeks, monotherapy trial (SUSTAIN 1)
SUSTAIN 2 – Ozempic vs. sitagliptin both in combination with 1–2 antidiabetic drugs (metformin and/or thiazolidinediones)

In a 56-week double-blind trial, 1,231 patients were randomised to Ozempic 0.5 mg once weekly, Ozempic 1 mg once weekly or sitagliptin 100 mg once daily, all in combination with metformin (94%) and/or thiazolidinediones (6%). Patients had a mean age of 55 years and a mean duration of type 2 diabetes of 6.6 years. There were 68% White patients, 5% were Black or African-American and 25% were Asian. For ethnicity, 17% of patients (n=209) were Hispanic or Latino. Mean BMI was 32 kg/m².

Table 4: Results of a 56-week trial of Ozempic compared to sitagliptin (SUSTAIN 2)

<table>
<thead>
<tr>
<th></th>
<th>Ozempic 0.5 mg</th>
<th>Ozempic 1 mg</th>
<th>Sitagliptin 100 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent-to-Treat (ITT) Population (N)</td>
<td>409</td>
<td>409</td>
<td>407</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.0</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-1.3</td>
<td>-1.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>Difference from sitagliptin [95% CI]</td>
<td>-0.8 [-0.9; -0.6]</td>
<td>-1.1 [-1.2; -0.9]</td>
<td>--</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c < 7%</td>
<td>69b</td>
<td>78b</td>
<td>36</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c ≤ 6.5%</td>
<td>53b</td>
<td>66b</td>
<td>20</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>9.3</td>
<td>9.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-2.1</td>
<td>-2.6</td>
<td>-1.1</td>
</tr>
<tr>
<td>Difference from sitagliptin [95% CI]</td>
<td>-1.0 [-1.3; -0.7]</td>
<td>1.5 [-1.8; -1.2]</td>
<td>--</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>89.9</td>
<td>89.2</td>
<td>89.3</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-4.3</td>
<td>-6.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>Difference from sitagliptin [95% CI]</td>
<td>-2.3 [-3.1; -1.6]</td>
<td>-4.2 [-4.9; -3.5]</td>
<td>--</td>
</tr>
<tr>
<td>Patients (%) achieving weight loss ≥ 5%</td>
<td>46b</td>
<td>62b</td>
<td>18</td>
</tr>
<tr>
<td>Patients (%) achieving weight loss ≥ 10%</td>
<td>13b</td>
<td>24b</td>
<td>3</td>
</tr>
</tbody>
</table>

b p < 0.0001 (2-sided) for superiority, adjusted for multiplicity based on hierarchical testing of HbA1c and body weight

b p < 0.0001 for treatment difference, unadjusted for multiplicity
In a 40-week open-label trial, 1,201 patients on metformin were randomised to either Ozempic 0.5 mg or 1 mg once weekly or dulaglutide 0.75 mg or 1.5 mg once weekly. The trial compared 0.5 mg of semaglutide to 0.75 mg of dulaglutide and 1 mg of semaglutide to 1.5 mg of dulaglutide. Patients had a mean age of 56 years and a mean duration of type 2 diabetes of 7.4 years. There were 77% White patients, 6% were Black or African-American and 16% were Asian. For ethnicity, 11% of patients (n=138) were Hispanic or Latino. Mean BMI was 33.5 kg/m².

Table 5: Results of a 56-week trial of Ozempic compared to sitagliptin (SUSTAIN 7)

<table>
<thead>
<tr>
<th></th>
<th>Ozempic 0.5 mg</th>
<th>Ozempic 1 mg</th>
<th>Dulaglutide 0.75 mg</th>
<th>Dulaglutide 0.75 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA₁c (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.3</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-1.5</td>
<td>-1.8</td>
<td>-1.1</td>
<td>-1.4</td>
</tr>
<tr>
<td>Difference from</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>dulaglutide [95% CI]</td>
<td>[-0.6; -0.2]a</td>
<td>[-0.6; -0.2]a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patients (%) achieving</td>
<td>68b,c</td>
<td>79b</td>
<td>52</td>
<td>67</td>
</tr>
<tr>
<td>HbA₁c < 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>9.8</td>
<td>9.8</td>
<td>9.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-2.2</td>
<td>-2.8</td>
<td>-1.9</td>
<td>-2.2</td>
</tr>
<tr>
<td>Difference from</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-</td>
</tr>
<tr>
<td>dulaglutide [95% CI]</td>
<td>[-0.6; -0.0]b</td>
<td>[-0.9; -0.3]b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>96.4</td>
<td>95.5</td>
<td>95.6</td>
<td>93.4</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-4.6</td>
<td>-6.5</td>
<td>-2.3</td>
<td>-3.0</td>
</tr>
<tr>
<td>Difference from</td>
<td>2.3</td>
<td>-3.5</td>
<td>-4.3; -2.8</td>
<td>-</td>
</tr>
<tr>
<td>dulaglutide [95% CI]</td>
<td>[-3.0; -1.5]b</td>
<td>[-4.3; -2.8]b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patients (%) achieving</td>
<td>44b</td>
<td>63b</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>weight loss ≥ 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients (%) achieving</td>
<td>14b</td>
<td>27b</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>weight loss ≥ 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a p < 0.0001 (2-sided) for superiority, adjusted for multiplicity based on hierarchical testing of HbA1c and body weight

*b p < 0.001 for treatment difference, unadjusted for multiplicity

c Ozempic® 0.5 mg vs. dulaglutide 0.75 mg
d Ozempic® 1 mg vs. dulaglutide 1.5 mg
SUSTAIN 3 – Ozempic vs. exenatide ER both in combination with metformin or metformin with sulfonylurea

In a 56-week open-label trial, 813 patients on metformin alone (49%), metformin with sulfonylurea (45%) or other (6%) were randomised to Ozempic 1 mg or exenatide ER 2.0 mg each administered once-weekly. Patients had a mean age of 57 years and a mean duration of type 2 diabetes of 9 years. There were 84% White patients, 7% were Black or African-American and 2% were Asian. For ethnicity, 24% of patients (n=197) were Hispanic or Latino. Mean BMI was 34 kg/m².

Table 6: Results of a 56 week trial of Ozempic versus exenatide ER (SUSTAIN 3)

<table>
<thead>
<tr>
<th></th>
<th>Ozempic 1 mg</th>
<th>Exenatide ER 2.0 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent-to-Treat (ITT) Population (N)</td>
<td>404</td>
<td>405</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-1.5</td>
<td>-0.9</td>
</tr>
<tr>
<td>Difference from exenatide ER [95% CI]</td>
<td>-0.6 [-0.8, -0.4]</td>
<td>–</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c <7%</td>
<td>67%</td>
<td>40</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c ≤6.5%</td>
<td>47%</td>
<td>22</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>10.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-2.8</td>
<td>-2.0</td>
</tr>
<tr>
<td>Difference from exenatide ER [95% CI]</td>
<td>-0.8 [-1.2, -0.5]</td>
<td>–</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>96.2</td>
<td>95.4</td>
</tr>
<tr>
<td>Change from baseline at week 56</td>
<td>-5.6</td>
<td>-1.9</td>
</tr>
<tr>
<td>Difference from exenatide ER [95% CI]</td>
<td>-3.8 [-4.6, -3.0]</td>
<td>–</td>
</tr>
<tr>
<td>Patients (%) achieving weight loss ≥5%</td>
<td>52%</td>
<td>17</td>
</tr>
<tr>
<td>Patients (%) achieving weight loss ≥10%</td>
<td>21%</td>
<td>4</td>
</tr>
</tbody>
</table>

* p < 0.0001 (2-sided) for superiority, adjusted for multiplicity based on hierarchical testing of HbA1c and body weight

SUSTAIN 4 – Ozempic vs. insulin glargine both in combination with 1–2 oral antidiabetic drugs (metformin monotherapy or metformin and sulfonylurea)

In a 30-week open-label trial, 1,089 patients were randomised to Ozempic 0.5 mg once weekly, Ozempic 1 mg once weekly, or insulin glargine once daily on a background of metformin (48%) or metformin and sulfonylurea (51%). Patients on insulin glargine started on 10 U injected once daily. The mean daily insulin dose at the end of the trial was 29 U per day. Patients had a mean age of 57 years and a mean duration of type 2 diabetes of 8.6 years. 77% were White, 9% were Black or African-Americans and 11% were Asian. For ethnicity, 20% of patients (n=213) were Hispanic or Latino. Mean BMI was 33 kg/m².

The proportion of patients reporting severe or blood glucose confirmed (<3.1 mmol/l) hypoglycaemic episodes were lower with Ozempic 0.5 mg (4.4%), and Ozempic 1 mg (5.6%) compared to insulin glargine (10.6%). More patients on Ozempic 0.5 mg (47%) and Ozempic 1 mg (64%) achieved HbA1c <7% without severe or blood glucose confirmed symptomatic hypoglycaemia and without weight gain compared to insulin glargine (16%).
Table 8: Results at 30 weeks of Ozempic in combination with basal insulin with or without metformin (SUSTAIN 5)

<table>
<thead>
<tr>
<th></th>
<th>Ozempic 0.5 mg</th>
<th>Ozempic 1 mg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent-to-Treat (ITT) Population (N)</td>
<td>132</td>
<td>131</td>
<td>133</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.4</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>Change from baseline at week 30</td>
<td>-1.4</td>
<td>-1.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>Difference from placebo [95% CI]</td>
<td>-1.4 [-1.6, -1.2]</td>
<td>-1.8 [-2.0, -1.5]</td>
<td>-</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c <7%</td>
<td>61</td>
<td>79</td>
<td>11</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.9</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Change from baseline at week 30</td>
<td>-1.6</td>
<td>-2.4</td>
<td>-0.5</td>
</tr>
<tr>
<td>Difference from placebo [95% CI]</td>
<td>-1.1 [-1.7, -0.5]</td>
<td>-1.9 [-2.5, -1.3]</td>
<td>-</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>92.7</td>
<td>92.5</td>
<td>89.9</td>
</tr>
<tr>
<td>Change from baseline at week 30</td>
<td>-3.7</td>
<td>-6.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>Difference from placebo [95% CI]</td>
<td>-2.3 [-3.3, -1.3]</td>
<td>-5.1 [-6.1, -4.0]</td>
<td>-</td>
</tr>
</tbody>
</table>

*p < 0.0001 (2-sided) for superiority, adjusted for multiplicity based on hierarchical testing of HbA1c and body weight

*p < 0.0001 for treatment difference, unadjusted for multiplicity

*p < 0.05 for treatment difference, unadjusted for multiplicity

Combination with sulfonylurea monotherapy

In SUSTAIN 6 (see section 5.1 – Pharmacodynamic Properties – Clinical Trials), a subgroup on sulfonylurea monotherapy was evaluated at week 30. There were 123 patients on sulfonylurea monotherapy at baseline. HbA1c at baseline was 8.8%, 8.9% and 8.9% for Ozempic 0.5 mg, Ozempic 1 mg, and placebo, respectively. At week 30, the change in HbA1c was -1.6%, -1.5% and 0.1% for Ozempic 0.5 mg, Ozempic 1 mg, and placebo, respectively.

Combination with premix insulin ± 1–2 OADs

In SUSTAIN 6 (see section 5.1 Pharmacodynamic Properties – Clinical Trials), a subgroup on premix insulin (with or without 2 OADs) was evaluated at week 30. There were 867 patients on premix insulin at baseline. HbA1c at baseline was 8.8%, 8.9% and 8.9% for Ozempic 0.5 mg, Ozempic 1 mg, and placebo, respectively. At week 30, the change in HbA1c was -1.3%, -1.8% and -0.4% for Ozempic 0.5 mg, Ozempic 1 mg, and placebo, respectively.

Body Weight

Ozempic 1 mg used as monotherapy or in combination with 1–2 medicinal products resulted in statistically superior reductions in body weight up to 6.5 kg, compared to patients receiving placebo, sitagliptin, exenatide ER, insulin glargine or dulaglutide (Table 3 to 7). The reduction in body weight was sustained for up to 2 years (Figure 7).

Fasting plasma glucose and Postprandial increments

Ozempic 0.5 mg and 1 mg showed significant reductions in fasting plasma glucose levels of up to 2.8 mmol/l and reductions in postprandial increments across all three daily meals (difference between pre-meal and post-meal values from three meals) of up to 1.2 mmol/l (in addition see section 5.1 Pharmacodynamic Properties).

Beta-cell function and insulin resistance

Beta-cell function measured by homeostasis model assessment for beta-cell function (HOMA-B) and insulin resistance measured by homeostasis model assessment for insulin resistance (HOMA-IR) overall improved with Ozempic 0.5 mg and 1 mg (in addition see section 5.1 Pharmacodynamic Properties).

Lipids

Overall, improvements in the fasting blood lipid profile were seen with Ozempic treatment across trials, mostly for the 1 mg group (in addition see section 5.1 Pharmacodynamic Properties).

Prevention of cardiovascular disease

In a 104-week double-blind trial (SUSTAIN 6), 3,297 patients with type 2 diabetes at high cardiovascular risk were randomised to Ozempic 0.5 mg or 1 mg once weekly or placebo 0.5 mg or placebo 1 mg in addition to standard-of-care hereafter followed for 2 years. In total 98.0% of the patients completed the trial and the vital status was known at the end of the trial for 99.6% of the patients.

The trial population was distributed by age as: 1,598 patients (48.5%) ≥ 65 years, 321 (9.7%) ≥ 75 years and 20 (0.6%) ≥ 85 years. There were 2,358 patients with normal or mild renal impairment, 852 with moderate and 107 with severe or end stage renal impairment. There were 61% males, the mean age was 65 years and mean BMI was 33 kg/m². The mean duration of diabetes was 13.9 years.

The primary endpoint was the time from randomisation to first occurrence of a major adverse cardiovascular event (MACE): cardiovascular death, non-fatal myocardial infarction or non-fatal stroke. The secondary endpoint was time from randomisation to first occurrence of an expanded composite cardiovascular outcome, defined as MACE, revascularisation (coronary and peripheral), unstable angina requiring hospitalisation or hospitalisation for heart failure. The total number of primary component MACE endpoints was 254, including 108 (6.6%) with Ozempic and 146 (8.9%) with placebo.

Treatment with Ozempic resulted in a 26% risk reduction in the primary composite outcome of death from cardiovascular causes, non-fatal myocardial infarction or non-fatal stroke. This was mainly driven by 39% decrease in the rate of non-fatal stroke and a 26% decrease in non-fatal myocardial infarction with no difference in cardiovascular death (see Figure 8).
Microvascular outcome comprised 158 new or worsening of nephropathy events. The hazard ratio (95% CI) of semaglutide vs placebo was 0.64 (0.46, 0.88) driven by new onset of persistent macroalbuminuria. A significant and sustained reduction in HbA1c from baseline to week 104 was observed with Ozempic 0.5 mg and 1 mg vs placebo 0.5 mg and 1 mg, in addition to standard-of-care (-1.1 and -1.4 vs -0.4 and -0.4, respectively).

Blood Pressure

Significant reductions in mean systolic blood pressure were observed when Ozempic 0.5 mg (3.5–5.1 mmHg) and Ozempic 1 mg (5.4–7.3 mmHg) were used in combination with oral antidiabetic medicinal products or basal insulin. For diastolic blood pressure, there were no significant differences between Ozempic and comparators.

Patient Reported Outcomes

Patient reported outcomes were assessed by the Diabetic Treatment Satisfaction Questionnaire status version (DTSQs). Ozempic significantly improved total treatment satisfaction and reduced perceived frequency of hyperglycaemia compared to exenatide once weekly, insulin glargine and placebo.

General health status was assessed by the Short Form health survey (SF-36 v2). Ozempic 1 mg once weekly demonstrated significantly greater improvement from baseline in a long-term cardiovascular safety study compared to placebo (SUSTAIN 6) in both mental component summary (MCS) and physical component summary (PCS) scores of the SF-36 v2.

Other Clinical Trials

In an open label monotherapy trial comparing the safety (primary objective) and efficacy (secondary objective) of Ozempic 0.5 mg and 1 mg once weekly with sitagliptin 100 mg once daily in 308 Japanese patients, a significant greater reduction of HbA1c levels from baseline after 30 weeks of treatment were achieved with Ozempic 0.5 mg and 1 mg compared to sitagliptin (-1.9%, -2.2% vs -0.7%). Significantly more patients achieved an HbA1c level of 7% with Ozempic 0.5 mg (84%) and 1 mg (95%) compared to sitagliptin (35%). Patients treated with Ozempic 0.5 mg and 1 mg had a significant decrease in body weight compared to that of patients treated with sitagliptin (-2.2 kg and -3.9 kg vs 0.0 kg). The most frequently reported adverse reactions (ARs) in this trial were gastrointestinal disorders. Greater proportions of patients treated with Ozempic 0.5 mg and 1 mg experienced gastrointestinal disorders vs patients treated with sitagliptin (38% and 41% for Ozempic 0.5 mg and 1 mg vs 17% with sitagliptin).

In an open label trial comparing the safety (primary objective) and efficacy (secondary objective) of Ozempic 0.5 mg and 1 mg once weekly with 1–2 OADs in 601 Japanese patients on monotherapy or 1OAD, a higher reduction in HbA1c was seen with Ozempic 0.5 mg (-1.7%) and 1 mg (-2.0%) compared to additional OAD (-0.7%). Patients treated with Ozempic 0.5 mg and 1 mg had a significant decrease in body weight compared to that of patients treated with additional OAD (-1.4kg and -3.2 kg vs +0.4kg). The most frequently reported ARs in this trial were gastrointestinal disorders. Greater proportion of patients treated with Ozempic 0.5 mg and 1 mg experienced gastrointestinal disorders vs patients treated with additional OAD (54% and 54% vs 20%).

5.2 Pharmacokinetic Properties

Semaglutide has pharmacokinetic properties compatible with once weekly administration, with an elimination half-life of approximately 1 week.

Absorption

Maximum concentration was reached 1 to 3 days post dose. Steady-state exposure was achieved following 4–5 weeks of once weekly administration. In patients with type 2 diabetes, the mean steady state concentrations following s.c. administration of 0.5 mg and 1 mg semaglutide were approximately 16 nmol/l and 30 nmol/l, respectively.

Semaglutide exposure increased in a dose proportional manner for doses of 0.5 mg and 1 mg.

Similar exposure was achieved with s.c. administration of semaglutide in the abdomen, thigh, or upper arm. Absolute bioavailability of s.c semaglutide was 89%.

Distribution

The mean volume of distribution of semaglutide following s.c. administration in patients with type 2 diabetes was approximately 12.5l. Semaglutide was extensively bound to plasma albumin (>99%).

Metabolism

Semaglutide is metabolised through proteolytic cleavage of the peptide backbone and sequential beta-oxidation of the fatty acid sidechain.

Excretion

The primary excretion routes of semaglutide related material were via the urine and faeces. Approximately 3% of the dose was excreted as intact semaglutide via urine.

Clearance of semaglutide in patients with type 2 diabetes was approximately 0.05 l/h. With an elimination half-life of approximately 1 week, semaglutide will be present in the circulation for about 5 weeks after the last dose.

Special Populations

No dose adjustment of semaglutide is needed based on age, gender, race, ethnicity, body weight, or renal or hepatic impairment. The effects of intrinsic factors on the pharmacokinetics of semaglutide are shown in Figure 10.

Age

Age had no effect on the pharmacokinetics of semaglutide based on data from phase 3a studies including patients of 20–86 years of age.

Gender

Gender had no effect on the pharmacokinetics of semaglutide.

Race

Race (White, Black or African-American, Asian) had no effect on the pharmacokinetics of semaglutide.

Ethnicity

Ethnicity (Hispanic or Latino) had no effect on the pharmacokinetics of semaglutide.
Semaglutide exposure (Cavg) relative to reference subject profile: non-Hispanic/ non-Latino, White female below 65 years, body weight 85 kg, with normal renal function. Population PK model also included maintenance dose and injection site as covariates. Body weight test categories (55 and 127 kg) represent the 5% and 95% percentiles in the dataset. Abbreviations: Cavg: average semaglutide concentration. CI: Confidence interval.

Figure 10: Impact of intrinsic factors on semaglutide exposure

Body Weight

Body weight had an effect on the exposure of semaglutide. Higher body weight results in lower exposure. Semaglutide doses of 0.5 mg and 1 mg provide adequate systemic exposure over a body weight range of 40–198 kg.

Renal Impairment

Renal impairment did not impact the pharmacokinetics of semaglutide in a clinically relevant manner. This was shown with a single dose of 0.5 mg semaglutide for patients with different degrees of renal impairment (mild, moderate, severe or patients in dialysis) compared with subjects with normal renal function. This was also shown for subjects with type 2 diabetes and renal impairment based on data from phase 3a studies (Figure 10), although the experience in patients with end-stage renal disease was limited.

Hepatic Impairment

Hepatic impairment did not have any impact on the exposure of semaglutide. The pharmacokinetics of semaglutide were evaluated in patients with different degrees of hepatic impairment (mild, moderate, severe) compared with subjects with normal hepatic function in a study with a single-dose of 0.5 mg semaglutide.

Paediatrics

Semaglutide has not been studied in paediatric patients.

5.3 Preclinical Safety Data

Genotoxicity

Semaglutide was not mutagenic in the bacterial reverse mutation assay, and was not clastogenic in vitro (cytogenetic assay in human lymphocytes), or in vivo (rat bone marrow micronucleus test).

Carcinogenicity

Non-lethal thyroid C-cell tumours observed in rodents are a class effect for GLP-1 receptor agonists. In 2 year carcinogenicity studies in rats and mice, semaglutide caused thyroid C-cell tumours at clinically relevant exposures (at ≥ 4x the clinical AUC in mice [based on the plasma AUC at the maximum recommended human dose of 1 mg/week] and subclinical exposures in rats; a no effect level was not established in either species). No other treatment related tumours were observed. The rodent C-cell tumours are caused by a non-genotoxic, specific GLP-1 receptor mediated mechanism to which rodents are particularly sensitive. The relevance for humans is considered to be low, but cannot be completely excluded.

Juvenile toxicity

In juvenile rats, semaglutide caused delayed sexual maturation in both males and females. These delays had no impact upon fertility and reproductive capacity of either sex, or on the ability of the females to maintain pregnancy.

6. PHARMACEUTICAL PARTICULARS

6.1 List of Excipients

- Dibasic sodium phosphate dihydrate
- Propylene glycol
- Phenol
- Hydrochloric acid
- Sodium hydroxide
- Water for injections

6.2 Incompatibilities

Substances added to Ozempic may cause degradation of semaglutide. Ozempic must not be mixed with other medicinal products, e.g. infusion fluids.

6.3 Shelf Life

In Australia, information on the shelf life can be found on the public summary of the Australian Register of Therapeutic Goods (ARTG). The expiry date can be found on the packaging. Shelf-life for pen in use: 42 days (6 weeks).

6.4 Special Precautions for Storage

Before use: Store in a refrigerator (2°C to 8°C). Keep away from the cooling element. Protect from light.

Do not freeze Ozempic and do not use Ozempic if it has been frozen.

After first use: Store below 30°C or in a refrigerator (2°C to 8°C). Do not freeze Ozempic and do not use Ozempic if it has been frozen. Keep the pen cap on when the Ozempic pen is not in use in order to protect from light.

Ozempic should be protected from excessive heat and light.

The Ozempic pen is for use by one person only.

Ozempic should not be used if it does not appear clear and colourless, or almost colourless.

Always remove the injection needle immediately after each injection and store the Ozempic pen without a needle attached. This may prevent blocked needles, contamination, infection, leakage of solution and inaccurate dosing.

6.5 Nature and Contents of Container

The primary packaging is a 1.5 mL or 3 mL glass cartridge (Type I glass) closed at one end with a rubber plunger (Type I/chlorobutyl) and at the other end with an aluminium cap with a rubber disc (Type I/bromobutyl/ polisoprene) inserted. The cartridge is assembled into a pre-filled multidose disposable pen made of polypropylene, poloxymethylene polycarbonate and acrylonitrile butadiene styrene.

There are two variants of the pre-filled pen for Ozempic:

- Ozempic 0.25 mg, 0.5 mg/dose solution for injection in pre-filled pen is able to deliver doses of 0.25 mg or 0.5 mg. This pen is intended to be used for dose escalation and maintenance treatment at the 0.5 mg dose. The pen contains 1.5 mL solution.
- Ozempic 1 mg/dose for injection in pre-filled pen is only able to deliver doses of 1 mg. This pen is to be used for maintenance treatment at the 1 mg dose only. The pen contains 3 mL solution.

Ozempic can be administered with needles up to a length of 8 mm. The pen is designed to be used with NovoFine® disposable needles. NovoFine Plus needles are included in the Ozempic package.

Pack sizes of:

- Ozempic® 0.25 mg, 0.5 mg/dose: 1 pre-filled pen including 6 disposable NovoFine Plus needles.
- Ozempic® 1 mg/dose: 1 pre-filled pen including 4 disposable NovoFine Plus needles.

6.6 Special Precautions for Disposal

The patient should be advised to discard the injection needle after each injection in accordance with local requirements.
6.7 Physicochemical Properties

Chemical structure

Molecular formula: C\textsubscript{187}H\textsubscript{291}N\textsubscript{45}O\textsubscript{59}

Molecular weight: 4113.6 daltons

CAS number

RN910463-68-2

7. MEDICINE SCHEDULE (POISONS STANDARD)
S4

8. SPONSOR
Novo Nordisk Pharmaceuticals Pty Limited
Level 3, 21 Solent Circuit,
Baulkham Hills,
NSW 2153,
Australia.
www.novonordisk.com.au

9. DATE OF FIRST APPROVAL
28 August 2019

10. DATE OF REVISION
N/A

Summary table of changes

<table>
<thead>
<tr>
<th>Section changed</th>
<th>Summary of new information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>